Comunicação Científica

Controle Químico de *Thrips tabaci* Lind., em Diferentes Épocas de Transplante de Cebola

Paulo A.S. Gonçalves¹ e Djalma R. Guimarães¹¹EPAGRI S.A., Estação Experimental de Ituporanga, Caixa postal 121, 88400-000, Ituporanga, SC.

An. Soc. Entomol. Brasil 25(1): 141-144 (1996)

Chemical Control of *Thrips tabaei* Lind. at Different Times Transplanting of Onion

ABSTRACT - The efficacy of insecticides against onion thrips, *Thrips tabaci* Lind. was tested at the Experimental Station of Ituporanga, EPAGRI S.A., Santa Catarina state, from July 1991 to January 1992. The most effective insecticide was lambdacyhalothrin 5.0 g.a.i./ha followed by cypermethrin 20.0 - 25.0 g.a.i./ha, and deltamethrin 7.5 g.a.i./ha. Insecticides caused significant yield increases, except acephate 375.0 g.a.i./ha (August transplanting); and dimetoate 400.0 g.a.i./ha and, fenpropathrin 45.0 g.a.i./ha (October transplanting).

KEY WORDS: Insecta, onion thrips, control, Allium cepa.

No Brasil, a principal praga da cultura da cebola é o tripes, Thrips tabaci Lind. ou piolho, como é popularmente conhecido em Santa Catarina. Esse inseto alimenta-se da seiva causando manchas prateadas, retorcimento, amarelecimento e seca das folhas (Menezes Sobrinho 1978, Gallo et al. 1988). Quando o ataque é intenso o "estalo" (tombamento por ocasião da maturação fisiológica) da planta é dificultado, o que favorece a penetração de águas das chuvas e ou irrigação até o bulbo, causando perdas na armazenagem (Lorini & Dezordi 1990). O tamanho e peso dos bulbos é reduzido pelo ataque de T. tabaci, podendo causar perdas superiores a 50% (Saini et al. 1989). O objetivo do trabalho foi avaliar alguns inseticidas quanto a sua eficácia no controle do tripes em diferentes épocas de transplantio da cultura da cebola.

O trabalho foi realizado na Estação Experimental de Ituporanga, SC, EPAGRI S.A. em 1991 e 1992. Foi composto por três experimentos realizados nas seguintes épocas de transplante da cultura da cebola: julho, transplante em 18/07/91, para cultivar EMPASC 352 'Bola Precoce': agosto, transplante em 19/08/91 para cultivar EMPASC 351 'Seleção Crioula'; setembro, transplante em 02/10/91 para cultivar EMPASC 'Norte 14'. O delineamento experimental foi o de blocos casualizados com quatro repetições. As parcelas experimentais foram constituídas de sete linhas de 40 plantas por linha, espaçamento de 40 x 7,5 cm, totalizado 280 plantas por parcela. Os princípios ativos testados foram: acephate 375,0 e 562,5 g.i.a./ha; cypermethrina 20,0 e 25,0 g.i.a./ha; deltamethrina 7,5 g.i.a./ha; dimetoato 400,0 g.i.a./ha; fenpropathrin 45,0

Tabela 1. Número médio de ninfas de tripes, Thrips tabaci, e percentagem de eficiência
(%EF) dos inseticidas testados na cultura da cebola, em três épocas de transplante. Ituporanga,
SC, 1991/92.

Tratamentos	Dosagens/Formulações (g.i.a./ha)	Julho		Agosto		Outubro	
		Ninfas1	%EF	Ninfas ¹	%EF	Ninfas ¹	%EF
Acephate	375,0 PM	6,91 bc	68,1	8,87 bc	58,2	15,54 ab	10,0
Acephate	562,5 PM	5,69 bcd	73,7	8,26 bc	61,1	13,64 ab	21,0
Cypermetrina	20,0 CE	3,52 def	83,7	5,86 cde	72,4	7,45 cd	56,8
Cypermetrina	25,0 CE	2,99 ef	86,2	5,04 de	76,3	6,76 d	60,8
Deltamethrina	7,5 CE	2,82 ef	87,0	4,33 de	79,6	7,59 cd	56,0
Dimetoato	400,0 CE	9,01 b	58,4	10,98 b	48,3	9,66 bcd	44,0
Fenpropathrin	45,0 CE	7,14 bc	67,0	10,92 b	48,6	10,34 abcd	40,1
Fenpropathrin	45,0 FW	4,33 cde	80,0	8,61 bc	59,5	12,24 abc	29,1
Isowathion	500,0 CE	3,72 def	82,8	6,16 cd	71,0	9,73 bcd	43,6
Lambdacyhaloth Padrão extremo	rin 5,0 CE	2,28 f	89,5	3,99 e	81,2	6,72 d	61,1
de controle (Deltamethrina) Testemunha sem	22,5 CE	0,49 g	97,7	0,39 f	98,2	1,62 e	90,6
aplicação	: *	21,64 a		21,24 a	(-)	17,26 a	*

¹Médias seguidas da mesma letra nas linhas, não diferem entre si ao nível de 5% de probabilidade pelo teste de Tukey.

g.i.a./ha em duas formulações CE e FW; isoxathion 500.0 g.i.a./ha; lambdacyhalothrin 5,0 g.i.a./ha; testemunha isenta de tripes, foi utilizada como padrão extremo de controle, deltamethrina 22,5 g.i.a./ha em aplicações semanais; testemunha sem aplicação. A aplicação dos inseticidas foi realizada quando o número médio de tripes por planta foi ⊕5, e posteriormente repetidas a cada 14 dias. Os inseticidas foram aplicados com um pulverizador costal, com bico "leque" 80.03, usando-se cerca de 6001 de calda/ha. As avaliações do número de ninfas de tripes foram semanais, coletandose cinco plantas ao acaso por parcela e posteriormente foram examinadas em laboratório.

A produtividade foi avaliada colhendose 60 bulbos no centro das parcelas experimentais. Os dados referentes a incidência de *T. tabaci*, e a produtividade foram submetidas à análise de variância e as médias comparadas, respectivamente pelos testes de Tukey e Duncan a 5%, sendo a eficiência de controle dos diferentes tratamentos determinada pela fórmula de Abbott (1925).

Níveis maiores de eficiência foram observados no experimento transplantado em princípios iulho рага os ativos lambdacyhalothrin 5,0 g.i.a./ha (89,5%), seguido por cypermethrina 20,0 e 25,0 (respectivamente 83,7% e 86,2%) e deltamethrina 7,5 (87,0%, Tabela 1). Apenas o padrão extremo de controle (deltamethrina 22,5 g.i.a./ha) proporcionou níveis de eficiência acima de 90%. O isoxathion 500,0 g.i.a./ha também apresentou eficiência semelhante a lambdacyhalothrin 5,0, exceto no transplantio de agosto (Tabela 1). O

Tabela 2. Produtividade média de bulbos de cebola (t/ha), submetidos a tratamento para o controle de tripes, *Thrips tabaci*, em três épocas de transplante, Ituporanga, SC, 1991/92.

	Dosagens/Formulações	Épocas de Transplante ¹				
Tratamentos	(g.i.a./ha)	Julho	Agosto	Outubro		
Acephate	375,0 PM	12,00 a	16,15 bc	11,63 bcd		
Acephate	562,5 PM	13,47 a	18,14 ab	13,56 bcd		
Cypermetrina	20.0 CE	13,87 a	17,54 ab	12,74 bcd		
Cypermetrina	25,0 CE	14,52 a	19,40 ab	13,94 bc		
Deltamethrina	7,5 CE	13,87 a	21,35 ab	14,72 b		
Dimetoato	400,0 CE	12,79 a	18,44 ab	9,25 de		
Fenpropathrin	45,0 CE	13,20 a	18,09 ab	9,78 cde		
Fenpropathrin	45,0 FW	13,38 a	17,03 ab	11,30 bcd		
Isoxathion	500,0 CE	13,61 a	20,36 ab	11,31 bcd		
Lambdacyhalothrin	5,0 CE	13,37 a	19,47 ab	14,67 b		
Padrão extremo de	25					
controle (Deltamethrina	22,5 CE	14,59 a	22,21 a	20,47 a		
Testemunha se aplicaçã	o -	7,83 b	11,88 c	6,71 e		

¹Médias seguidas da mesma letra nas linhas, não diferem entre si ao nível de 5% de probabilidade pelo teste de Duncan.

lambdacyhalothrin 5,0 g.i.a./ha também destacou-se no controle de *T. tabaci* (E.S. Uzumaki *et al.* não publicado), com nível de eficiência superior a 70%, utilizando a cultivar Baia Periforme. A cypermethrina também foi considerada eficiente (Zaman 1989), porém na dosagem de 37,5 ml i.a./ 100 litros de água, superior a do presente trabalho. A eficiência da deltamethrina a 7,5 g.i.a./ha também foi observada nessa dosagem e a 10,0 atingindo eficiências superiores a 90% (Lyra Neto *et al.* 1989, E.R. Silveira & D.R. Guimarães, não publicado).

A produtividade foi superior nos tratamentos com inseticida em relação a testemunha sem aplicação, exceto para o acephate 375,0 g.i.a./ha (transplante de agosto), dimetoato 400,0 e fenpropathrin 45,0 (transplante de outubro) (Tabela 2).

Os tratamentos que se destacaram em eficiência apresentaram níveis de produtividade semelhante ao padrão

extremos de controle, exceto para o transplante de outubro (Tabela 1). Provavelmente as altas infestações de T. tabaci, que ocorreram no transplantio de outubro, não permitiram aos tratamentos eficientes manter a produtividade semelhante ao padrão extremo de controle. Lorini et al. (1986), observaram que as cultivares transplantadas a partir de setembro apresentaram o início do estádio de desenvolvimento coincidindo com altas infestações da praga, e sugeriram maior atenção no controle para esta época de transplante. Esses autores observaram que no transplantio de julho a produção de bulbos foi menos danificada, por estar com o bulbo formado quando ocorreram altas infestações de T. tabaci. Convém ressaltar, que no transplante de julho todos tratamentos foram superiores em produtividade com relação a testemunha (Tabela 1).

Agradecimentos

Ao técnico agrícola Marcelo Pitz e sua equipe, para as laboratoristas Adriana M.S. Campos e Luciane A.L. Lemkhul pelo apoio na condução do trabalho.

Literatura Citada

- Abbott, W.S. 1925. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18: 265-266.
- Gallo, D., O. Nakano, S.S. Neto, R.P.L. Carvalho, G.C. Batista, E. Berti Filho, J.R.P. Parra, R.A. Zucchi, S.B. Alves & J.D. Vendramim. 1988. Manual de Entomologia Agrícola. São Paulo, CERES, 649p.
- Lyra Neto, A.M.C. de, J.A. Candeias, L.J. da G. Wanderley & D. Menezes. 1989.
 Controle de *Thrips tabaci* (Lindeman, 1888) (Thysanoptera: Thripidae) e de *Lyriomiza trifollii* (Burgess, 1880) (Diptera: Agromyzidae) em cebola. An. Soc. Entomol. Brasil 18: 43-49.

- Lorini, I. & J. Dezordi. 1990. Flutuação populacional de *Thrips tabaci* Lindeman, 1888 (Thysanoptera: Thripidae) na cultura da cebola. An. Soc. Entomol. Brasil 19: 361-365.
- Lorini, I., L. Torres & D.R. Guimarāes. 1986. Flutuação populacional de tripes na cultura da cebola. EMPASC, Pesq. And. 62, 4p.
- Menezes Sobrinho, J.A. 1978. Pragas do alho. Inf. Agropec. 4: 41-44.
- Saini, R.K., A.S. Dahiya & A.N. Verma. 1989. Field evaluation of some insecticides against onion thrips, *Thrips* tabaci Lindeman (Thysanoptera: Thripidae). Haryana Agric. Univ. J. Res. 19: 336-342.
- Zaman, M. 1989. Effect of foliar insecticides against thrips on onion in Peshawar, Pakistan, p. 332-333. Agric. Res. Inst. Tarnab, Peshawar, Pakistan.

Recebido em 26/07/94. Aceito em 04/12/95.